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Tutorial 4: Spanning tree 
Artificial Intelligence 

G.Guérard 

SOME SOLUTIONS MAY HAVE FALSE CLUES – SO BE CAREFUL 

Spanning tree 

Exercise 1 
There are 5 cities. The cost of building a road directly between i and j is the entry ai,j in the matrix 

below. An indefinite entry indicates that the road cannot be built. Determine the least cost of making 

all the cities reachable from each other. 

 

Solution 
We order the edges according to the weights: 12, 23, 13, 45, 25, 15, 24, 35, 14 (raw-column). 

Kruskal’s Algorithm accepts edges 12, 23, then rejects 13, then accepts 45, 25, and then it stops. 

Thus, the least cost to build the road network is 3 + 3 + 7 + 8 = 21. 

 

Exercise 2 
Professor Herr Guerard proposes a new divide-and-conquer algorithm for computing minimum 

spanning trees, which goes as follows.  

Given a graph G = (V, E), partition the set V of vertices into two sets V1 and V2 such that |V1| and |V2| 

differ by at most 1. Let E1 be the set of edges that are incident only on vertices in V1, and let E2 be 

the set of edges that are incident only on vertices in V2. Recursively solve a minimum-spanning-tree 

problem on each of the two subgraphs G1 = (V1, E1) and G2 = (V2, E2). Finally, select the minimum-

weight edge in E that crosses the cut V1, V2, and use this edge to unite the resulting two minimum 

spanning trees into a single spanning tree.  

Either argues that the algorithm correctly computes a minimum spanning tree of G, or provide an 

example for which the algorithm fails.  Found an example where it works and where it doesn’t work. 
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Solution 
We claim that the algorithm will fail. A simple counter example is shown below. Graph G = (V, E) has 

four vertices: {v1, v2, v3, v4}, and is partitioned into subsets G1 with V1 = {v1, v2} and G2 with V2 = {v3, 

v4}. The MST of G1 has weight 4, and the MST of G2 has weight 5, and the minimum-weight edge 

crossing the cut (V1, V2) has weight 1, in sum the spanning tree forming by the proposed algorithm 

follows {v2, v1, v4, v3} which has weight 10. On the contrary, it is obvious that the MST of G follows {v4, 

v1, v2, v3} with weight 7. Hence the proposed algorithm fails to obtain an MST. 

 

(Take another example than the solution for the oral test!) 

 

Exercise 3 
Show that if G is a weighted graph and e is an edge whose weight is smaller than that of any other 
edge, then e must belong to every minimum weight spanning tree for G. 

Solution 
Suppose that T is a minimum weight spanning tree for G that does not contain the edge e. Then 

Consider the graph T+e. This graph must contain a cycle C that contains the edge e. Let f be an edge 

of C different from e, and set T*=T+e−f. Then T* is also a spanning tree for G, but 

w(T*)=w(T+e−f)=w(T)+w(e)−w(f) < w(T), contrary to T being a minimum weight spanning tree. Hence 

no such tree T (i.e., without e) can exist. 

 

Exercise 4 
Show that if all the weights of the weighted graph G are distinct, then there is a unique minimum 
weight spanning tree for G. 

Solution 
The proof somewhat mimics that of the proof of Kruskal’s Algorithm. Suppose that T is a tree 

generated by Kruskal’s Algorithm (in fact, a moment’s thought shows that with the conditions of the 

problem, only one such tree could be generated). We claim there is no other minimum weight 

spanning trees for G. Suppose (and we will show this leads to a contradiction) that there are other 

minimum weight spanning trees, and choose one, T'. Then suppose that e is the first edge of T that is 

not in T'. In other words, suppose that the edges of T, in the order they were added to form T, are e1, 

e2 , …, ek , …en−1 and that e = ek and for all i<k, ei ∈T' . Let C be the cycle in T'+ e that contains e. let f 
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be an edge of C that is not in T'. We note that by the nature of Kruskal’s algorithm, the weight of f 

must be greater than the weight of e. This is because at the time we placed e into T, f was also 

available and would not have produced a cycle (since all the edges of T up to that point are in T' as 

well). So if w(f)<w(e), we would have used f at that juncture. So now set T*=T'+e−f is a spanning tree 

of weight less than T', a contradiction.  

 

Exercise 5 
Consider a “reversed” Kruskal’s algorithm for computing a MST. Initialize T to be the set of all edges 

in the graph. Now, consider edges from largest to smallest cost. For each edge, delete it from T if that 

edge belongs to a cycle in T. Assuming all the edge costs are distinct, does this new algorithm 

correctly compute a MST? 

Solution 
Yes, it does. At stage k (starting a k=1), the algorithm considers the k-th largest cost edge. If that edge 

belongs to a cycle in the remaining graph T, then all edges in that cycle (and indeed in T) must have 

smaller cost than the edge being considered. Thus, the edge cannot belong to the MST (by the 

previous question). The algorithm cannot terminate with T having a cycle, since the algorithm would 

have considered each edge in such a cycle and would have removed the edge of the largest cost 

when it considered that edge. The algorithm also cannot terminate with T being disconnected, since 

edges are only removed when they belong to a cycle, and disconnecting an edge that belongs to a 

cycle does not disconnect the graph. Thus the algorithm terminates with T being a spanning tree. It is 

the MST because all the edges that were removed have the property that they cannot belong to the 

MST. Since the only edges that could belong to the MST are the ones that remain, and they indeed 

define a spanning tree, it must be the MST. 


