Algorithmes d’essaims

Algorithmes :

Paquets et outils :


Introduction

L’intelligence en essaim est l’étude de systèmes informatiques inspirés de l' »intelligence collective ». L’intelligence collective émerge grâce à la coopération d’un grand nombre d’agents homogènes dans l’environnement. Les exemples incluent les bancs de poissons, les volées d’oiseaux et les colonies de fourmis. Cette intelligence est décentralisée, auto-organisée et distribuée à travers un environnement. Dans la nature, de tels systèmes sont couramment utilisés pour résoudre des problèmes tels que la recherche efficace de nourriture, l’évasion de proies ou le déplacement de colonies. Les informations sont généralement stockées dans tous les agents homogènes participants, ou sont stockées ou communiquées dans l’environnement lui-même, par exemple par l’utilisation de phéromones chez les fourmis, la danse chez les abeilles et la proximité chez les poissons et les oiseaux.

Le paradigme se compose de deux sous-domaines dominants 1) Optimisation des colonies de fourmis qui étudie les algorithmes probabilistes inspirés par la stigmergie et le comportement de recherche de nourriture des fourmis, et 2) Optimisation des essaims de particules qui étudie les algorithmes probabilistes inspirés par le troupeau, les bancs de poisson et l’élevage. Comme le calcul évolutif, les algorithmes ou stratégies d’intelligence en essaim sont considérés comme des stratégies adaptatives et sont généralement appliqués aux domaines de recherche et d’optimisation.