Immune algorithms

Algorithms:


Introduction

A simplified description of the immune system is an organ system intended to protect the host organism from the threats posed to it from pathogens and toxic substances. Pathogens encompass a range of microorganisms such as bacteria, viruses, parasites and pollen. The traditional perspective regarding the role of the immune system is divided into two primary tasks: the detection and elimination of pathogen. This behavior is typically referred to as the differentiation of self (molecules and cells that belong to the host organisms) from potentially harmful non-self. More recent perspectives on the role of the system include a maintenance system, and a cognitive system.

The architecture of the immune system is such that a series of defensive layers protect the host. Once a pathogen makes it inside the host, it must contend with the innate and acquired immune system. These interrelated immunological sub-systems are comprised of many types of cells and molecules produced by specialized organs and processes to address the self-nonself problem at the lowest level using chemical bonding, where the surfaces of cells and molecules interact with the surfaces of pathogen.

The adaptive immune system, also referred to as the acquired immune system, is named such because it is responsible for specializing a defense for the host organism based on the specific pathogen to which it is exposed. Unlike the innate immune system, the acquired immune system is present only in vertebrates (animals with a spinal column). The system retains a memory of exposures which it has encountered. This memory is recalled on reinfection exhibiting a learned pathogen identication. This learning process may be divided into two types of response. The first or primary response occurs when the system encounters a novel pathogen. The system is slow to respond, potentially taking a number of weeks to clear the infection. On re-encountering the same pathogen again, the system exhibits a secondary response, applying what was learned in the primary response and clearing up the infection rapidly. The memory the system acquires in the primary response is typically long lasting, providing pathogenic immunity for the lifetime of the host, two common examples of which are the chickenpox and measles. White blood cells called lymphocytes (or leukocytes) are the most important cell in the acquired immune system. Lymphocytes are involved in both the identication and elimination of pathogen, and recirculate within the host organisms body in the blood and lymph (the fluid that permeates tissue).

Modern Articial Immune systems are inspired by one of three sub-fields: clonal selection, negative selection and immune network algorithms. The techniques are commonly used for clustering, pattern recognition, classication, optimization, and other similar machine learning problem domains.