Tutorial 3: Shortest path
 Artificial Intelligence

G.Guérard

Exercise 1

The air company Europa serves various European cities. The table below gives against the flight times between these cities.

- How to determine the fastest route between two cities?
- How to modify the previous method to take into

	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}
\mathbf{A}		1 h 30	2 h 00		2 h 15
\mathbf{B}	1 h 40				3 h 00
\mathbf{C}	2 h 20			2 h 55	
\mathbf{D}			3 h 20		1 h 05
\mathbf{E}	2 h 25	3 h 10	1 h 10		

Exercise 2

We want to build a new plant in the following network, nodes are places and links represents costs to send energy from one place to another:

Based on Dijkstra algorithm, propose a method to find the best place to build the plant, and then solve the problem with your method. Solve the problem with Floyd-Warshall algorithm.

Exercise 3

A robot moves in the following environment. It starts from the node labeled start and needs to reach the node labeled end. The environment is continuous and the scale is supplied on the figure. Considering the robot is a point, what is the shortest path from Start to End.

Exercise 4

Propose an algorithm to solve any maze based on search tree. Propose an algorithm to find a minimum path in any maze based on our previous one. Solve this problem with Dijkstra. Considering the maze is not known, do the algorithms still work? How to proceed?

Exercise 5

Considering the graph in exercise 1, edges are directed from left to right (or up to down) and weights are decreased by 4 . How to find a minimal path from A to F? Solve it.

