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Overview

Weighted Graphs

In a weighted graph, each edge has an associated numerical
value, called the weight of the edge. It may represent distances,
costs, etc.

Example

In a flight route graph, the weight of an edge represents the
distance in miles between the endpoint airports.
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Applicatio

SHORTEST-PATHS is a broadly usefull problem-solving model:

m Maps: traffic, traffic planning, traffic congestion pattern, robot
navigation

m Telecommunication: routing, protocols, pipelining
m Software: texture mapping, typesetting, subroutine

m Finance: approximating piecewise linear functions, exploiting
arbitrage opportunities, scheduling.
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Shortest path

Given a weighted graph and two vertices, we want to find a
path of minimum total weight. Length of a path is the sum of the
weights of its edges.

How can we solve this problem? Which paradigm is usefull?
BRUTE-FORCE: find all paths, pick the shortest.

NAIVE: build a spanning tree, find the unique path
between the two vertices (no optimality).

RECURSIVE: use graph search algorithm and store the
shortest path (no optimality).

DYNAMIC PROGRAMMING: we have to verify the conditions...
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Given a directed graph G = (V, A) with source node s, target node t,

and cost w;; for each edge (i, j) in A, consider the program with
variables x;;

minimize ) ;;c 4 wj;x; subject to x > 0 and for all /,

1, ifi =s;
Zinj*Ziji: -1, ifi=t
0, otherwise.

The intuition behind this is that x;; is an indicator variable for
whether edge (7, /) is part of the shortest path: 1 when it is, and 0 if it
is not. We wish to select the set of edges with minimal weight, subject
to the constraint that this set forms a path from s to t .

The dual for this linear program is (see the example next slide):

maximize y; — ys subject to for all ij, y; — y; < wj;
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Linear Progea

One variable per vertex, one inequality per edge.

minimize Xt

subject Xs+9 ¢ Xz
to ‘rh.z Xs+14 ¢ Xg T2 T
constraints . +15 ¢ x; S S~ 18
14 H
X2+24 ¢ X3 \5 / 2 |
X3+2 € X5 /\w‘* / 1 A
s \

15
x3+169s><1 5 2D/" \15 s
X3+6 ¢ X3
inferpretation: //
P s

6
x; = length of xarsExa

19

x5+11 ¢ x4
x5+16 ¢ Xt
X6 +18 ¢ x3
X6+30 < x5

shortest path from
source to i

X6+b 2 x7
x7+20 ¢ x5
x7+44 ¢ xr
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One variable per vertex, one inequality per edge.

minimize Xt
subject Xs+9 ¢ x2 ? P2
to the xs+14 ¢ xg 0 —r2 # /3
. = 1
constraints 415 ¢ x; s 18 /5\

14 14
X2+24 ¢ X3 \56/ 2 g
~
X3+2 ¢ X5 / ELNN / n—r1 1
x3+19 ¢ x 15 5 s \
3 < Xt /;4 ~— .
X3+6 ¢ X3 /2D 16
interpretation:
P X4+6 ¢ Xt t

x; = length of
shortest path from orll e 15 o
source toi x5+16 ¢ xr solution

x6+18 ¢ x3 xs= 0

xe+30 ¢ x5 xz= 9

X6+B € x7 xe = 32

x7+20 ¢ X5 s :i

x7+44 < xt :;14

X:= 0 x7 = 15

X2, ..,% 20 x+ = 50
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Principle of Optimality

An optimal policy has the property that whatever the initial state and initial
decision are, the remaining decisions must constitute an optimal policy with
regard to the state resulting from the first decision.

A problem that can be broken apart like this is said to have optimal
substructure.

Also known as a dynamic programming equation, it is a necessary
condition for optimality associated with the mathematical
optimization method known as dynamic programming. It writes the
value of a decision problem at a certain point in time in terms of the
payoff from some initial choices and the value of the remaining
decision problem that results from those initial choices. This breaks a
dynamic optimization problem into simpler subproblems.
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A SUBPATH OF A SHORTEST PATH IS ITSELF A SHORTEST PATH. I

Let OO (x;, xj) be shortest path between x;,x; € V2and x, € ()" a
point on the path.

Then, principle of optimality give that Q(x;, xc) and Q(x, xj)
are shortest sub-paths between x;,xx and x, ;.

Suppose there exits a shorter path Q' (x;, x ). Thus,

O (x1, %) = Q' (x5, %) + Qxk, x;) < Qx5 %) + Qxk, ;)
O'(x;, xj) < Q*(x;, x;) so there is a contradiction to t O*(x;, x;)
being shortest path.
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Tree of sh
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Property 2

THERE IS A TREE OF SHORTEST PATHS FROM A START VERTEX
TO ALL THE OTHER VERTICES.

Assume the graph is connected, edges are undirected and
weights are nonnegative. We grow a cloud of vertices,
beginning with s and eventually covering all the vertice. We
store with each vertex v a label d(v) representing the distance
of v from s in the subgraph consisting of the cloud and its
adjacent vertices. At each step: we add to the cloud the vertex u
outside the cloud with the smallest distance label; we update
the labels of the vertices adjacent to u (see spanning tree).
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Edge relaxation

Consider an edge e = (u, z) such that v is the vertex most recently
added to the cloud and z is not in the cloud. The relaxation of edge e
updates distance d(z) as follows

d(z) < min{d(z), d(u) + weight(e)}

GG | AL 12/
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Definitio

Observation

ONCE WE DETERMINE THE SHORTEST PATH TO A VERTEX v,
THEN THE PATHS THAT CONTINUE FROM v TO EACH OF ITS
ADJACENT VERTICES COULD BE THE SHORTEST PATH TO EACH
OF THOSE NEIGHBOUR VERTICES.

Visited vertex

A vertex for which we have determined the shortest path to it.
Once we set a vertex as VISITED, that is final, and we won't visit
that vertex again.

Marked vertex

A vertex for which a path to it has been found. We mark that
path as a CANDIDATE for shortest path to that vertex.
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Algorit

DIJKSTRA’s algorithm follows these steps:
m Initialize: d(start) = 0, otherwise d(i) = oo
m At each iteration:

m Select the unvisited vertex with smallest non-oo distance, denoted
a. Set it as visited.
m Mark each of the vertices b adjacent to a (its neighbours)

m [f a neighbour was not marked, set its distance to a’s distance plus
the weight of the edge going to that neighbour.

m If it was marked, overwrite its distance if the result is smaller than
its current distance.

B ie d[b] = min(d[b], d[a] + weight(a, b)).

m Ends when we visit the target vertex or no more non-oo
distances.

GG | AL
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‘ distance ‘ A ‘ B ‘ C ‘ D ‘ E ‘ F ‘ G ‘ H ‘ I ‘ ] ‘

initiate 0 © oo oo =S s8] ) ) o oo

A(0) 85(A) 217(A) oo 173(A) 3 ) o oo o
B(85,) 217(A) 8] 173(A) 165(B) © © oo )
F(165p) 217(A) 8] 173(A) © 0 415(F) 9}
E(173,) 217(A) o S © 415(F) 675(E)
C(217,) oo 403(C) 320(C) 415(F) 675(E)
H(320¢) 503(H) 403(C) 415(F) 487(H)
G(403¢) 503(H) 415(F) 487(H)
1(415F) 503(H) 487(H)
J(503y) 503(H)

B(854) means that we marked B, with d(B) = 85 and on the shortest
paths’ tree, A is the parent of B.
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Condit

- ;‘J...‘«ec&; = .

Dijkstra’s algorithm can be used if the following conditions are true:
No negative weight:

we valid the shortest path at each step

if there are only positive weight, after adding a new vertex, we
add the adjacent edge to update the marked vertices. Thus, once a
path is valided, we cannot found a shortest path than it.

if there are negative weight, it is possible to find a path, through
visited or non visited vertices, which have a smaller distance than
the known paths. We cannot guaranted a shortest path at each
iteration.

Oriented or non-oriented graph (if possible connected).
Finite number of vertices.
An unique source (see the initialization).

Dijkstra’s algorithm is a greedy dynamic programming algorithm, it
visits all possible solutions.

GG | AL 19/42
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Definit

As shown in the previous slide, a negative weight make
Dijkstra’s algorithm obsolete. BELLMAN'’S algorithm, also
called DAG (directed acyclic graph) algorithm can compute a
shortest path in a directed acyclic graph.

Observation

If we know all edge (u, v) with v in the cloud and v outside the
cloud. We know all shortest paths to u, so we can compute
d(v) = min{d(u) + weight(u, v)}.
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Algorit

BELLMAN'’s algorithm follows these steps:
m Initialize: d(start) = 0, otherwise d(i) = oo
m At each iteration:

m Select the unvisited vertex which have all its predecessor visited.
m Mark each of the vertices b adjacent to a (its neighbours)

m If a neighbour was not marked, set its distance to a’s distance plus
the weight of the edge going to that neighbour.

m If it was marked, overwrite its distance if the result is smaller than
its current distance.

B ie d[b] = min(d[b], d[a] + weight(a, b)).

m Ends when we visit the target vertex or no more valid vertices.

GG | AL
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Ais a start vertex (source), F is an end vertex (sink).
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Exampl

‘ iteration ‘ A ‘ B ‘ C ‘ D ‘ E ‘ F ‘ G ‘ H ‘ I ‘ ] ‘
0 0 o [N ) oo ) ) [ 5] oo
1 1(A) 2(A) & Y] 8 © 5(A) o )
2 0(0) 0o 4(C) ) ) 5(A) ) ©
3 3(B) 2(B) © © 5(A) © )
4 D) | 7D) | 5D) | 5(A) o IS
5 5E) | 5(D) | 5(A) ™ o
6 5(E) 5(A) | 8(G) ©
7 5(E) 8(G) 8(H)
8 5(E) 7(I)
9 L))

3(B) means that the distance from A is 3, and its predecessor is B
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Condltl/g

—

Bellman’s algorithm can be used if the following conditions are true:

Positive or negative weight with no cycle:
we valid a vertex when all its predecessor are visited
if there is a cycle, there is a path (v1, ..., v;, v1). To visite vi, we have to
visite all predecessors of vy, including v;.
by recurrence, we can visite v; if we visite vq. This is not possible.
Oriented or non-oriented graph (if possible connected).
Finite number of vertices.
An unique source (see the initialization).
Bellman'’s algorithm is a greedy dynamic programming algorithm (similar to
a bread first search), it visits all possible solutions.

L
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Definiti

BELLMAN-FORD’s algorithm can compute a shortest path in
any graph.

If a graph contains a negative-weight cycle, then some shortest
paths may not exist

Algorithm

Find all shortest-path lengths from a source to all vertices or
determines that a negative-weight cycle exists.

GG | AL 26/42
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Algorithm

BELLMAN-FORD’s algorithm follows these steps:
m Initialize: d(start) = 0, otherwise d(i) = oo
m Forifrom1to|V|— 1 (the diameter of a graph is at most
V=1
m d[b] = min(d[b], d[a] + weight(a, b)) for each edge (u,v) € A
m Foreach edge (u,v) € A, if d[b] > d[a] + weight(a, b) then
report a negative-weight cycle.
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Example

| Iteration ‘ A ‘ B ‘ C ‘ D ‘ E |
0 0 00 00 00 1)
0 |-1(A) | 4(A) | oo 00

0 |-1(A) | 2(B) | 1(B) | 1(B)
(A | 2(B) | -2(B)
0 | -1(A) | 2(B) | 2(E) | 1(B)

-1(A) means that the distance from A is -1, and its predecessor
is A. Only vertices in bold have effect the next iteration (for
each vertices, compute the minimum value of these shortest
paths plus edge to this vertex). If two iteration found the same
result, we can stop the algorithm.

B WIN| =
(@)
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Bellman-Ford’s algorithm is a greedy dynamic programming
algorithm that computes shortest paths of increasing size. It is
suitable to any graph.

GG | AL 31/42
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WE WANT TO DETERMINE THE SHORTEST PATHS BETWEEN ALL
PAIRS OF VERTICES.

We could use Dijkstra of Bellman-Ford, with each vertex in turn
as the source. Can we do better ?

In the FLOYD-WARSHALL algorithm, we assume we are access
to a graph with n vertices as a n? adjacency matrix W. The
weights of the edges are represented as follows:

0 ifi=k
Wi; = q wj; if such edge exists .

oo otherwise

GG | AL
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Optimal substructure

For a path p = py, ..., pk, define the intermediate vertices of p

to be the vertices po, ..., px_1. Let dfjk) be the weight of a
shortest path from i to j such that the intermediate vertices are
all in the set {1, ..., k}. If there is no shortest path from / to j of

tis form, then dlk) — 0o; in the case k = 0, d,-J(-O) = Wj; on the

H
other hand, for kK = n, we have to determine a
dynamic—proramming recurrence.

GG | AL 33/42
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Transitive.closuries
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Let p be a shortest path from i to j with all intermediate vertices
intheset {1,..., k}.

Observation

If k is not an intermediate vertex of p, then p is also a shortest
path with all intermediate vertices in the set {1,..., k — 1}. If k
is an intermediate vertex of p, then we decompose p into a path
p1 between i and k, and a path p, between k and j; they are
shortest paths.

We therefore have the following recurrence for
* { W if k=0

min{dff Y, a4 df V) k=1

GG | AL 34/42
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Based on the recurrence, we can give the following bottom-up
algorithm for computing d, ,-5-") for all pairs /, j.

m Initialize: d(start) = wjj, otherwise d(i) = oo

m For k from1ton

m forifrom1ton
m for j from1ton
(k) o L gtk glk=1) | 4 (k=1)
dl.j < min {dij , dy + dkj }

m Ends when transitive closure is done.

GG | AL
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1 o o™
oo 0 1 oo

2 4 0 0O

-1 o0 oo 0

0 1 o o 0 1 2
dh — o 0 1 oo 4@ — oo 0 1 o
2 3 0 0)° 2 3 0 0

-1 0 0o O -1 0 1 0
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Exampl

Fundamental Knowledge

0 1 o= o

cc 0 1 oo

2 4 0 0

-1 o0 oo 0
0 1 2 2 0o 1 2 2
{3)_3011 (4) 0O 0 1 1
d 23{]0‘d -1 0 0 O
-1 0 1 0 -1 0 1 0
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Predecessormatring
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We know the values of shortest paths, how to determine the
tree?

Predecessor matrix

We define a sequence of matrices 1), ..., TT(") such that H,(.jk)

is the predecessor of j in a shortest path from i to j only using
vertices in the set {1,..., k}. Then, for k = 0,
ifi =jorWj=o0

H(o) - null
N if i # jand Wy # oo
essentially the same recurrence as for d (k) Formally,

(k—1) . (k—1) (k—1) (k—1)
(k) _ {H?.k . if dif Y < dy TV + d
ke

i
kj

. For kK > 1, we have

otherwise

GG | AL
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m Initialize: d(start) = wjj, otherwise d (i) = oo
m For k from1ton
m forifrom1ton

m for j from1ton

Ol.fd’;kfl) < d,-ik’ludi,-k*”

(k) (k—1) (k) (k—1)
dl-j %d,-j [de,.j <—HU

°else
(k) (k1) (k—=1) (k) (k—1)
d’.j — dy + dkj and Hij — ij
m Ends when transitive closure is done.
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Examl/)l

0 3 8§ oo —4 NIL 1 1 NIL ]

o 0 o0 1 7 NIL NIL NIL 2 2
PO =| x 4 0 o o™ no—| ni. 3 NIL NIL NIL
2 o -5 0 = 4 NIL 4 NIL NIL
x© o0 oo 6 0 NIL NIL NIL 5 NIL

0 5] 8 oo -4 NIL 1 1 NIL 1

oo 0 oo 1 NIL NIL NIL 2 2
PPU=| 4 0 = nY =] ML 3 NL NL NL
2 5 =5 0 =2 4 1 4 NIL 1
oo 00 6 0 NIL NIL NIL 5 NIL

0 3 8 4 —4 NIL 1 1 ) 1

o 0 o0 1 7 NIL.  NIL NIL 2 2
PP=|o 4 0 5 11 n=| wne 3 N 2 2
2 5 =5 0 -2 4 1 4  NIL 1
x oo oo 6 0 NIL NIL NIL 5 NIL
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0 3 8 4 —4 NIL | 1 2 1
o 0 oo | 7 NIL NIL NIL 2 2
P¥=|oc 4 0 5 11 n¥»=]wne 3 N 2 2
2 -1 -5 0 -2 4 3 4 NIL 1
o oo oo 6 0 NIL NIL NIL 5 NIL
0 3 -1 4 -4 NIL 1 4 2 1
3 0 -4 1 -1 4 NIL 4 % 1
pH =7 4 05 3 n$=1 4 3 N 2 1
2 -1 -5 0 =2 4 3 4  NIL 1
8 5 1 6 0 4 3 4 5 NIL
0 1 -3 2 -4 NIL 3 4 5 1
3 0 -4 1 =1 4 NIL 4 2 1
pS=17 4 05 3 n =14 3 N 2 1
2 -1 -5 0 =2 4 3 4  NIL 1
8 5 1 6 0 4 3 4 5 NIL
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YOU HAVE TO KNOW BEFORE THE TUTORIAL:
Shortest path problem
Dynamic programming approach
Dijkstra’s algorithm
Ford-Bellman’s algorithm.

Know all the recurrence functions!
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