Swarm Algorithms 101

Swarm algorithms

Swarm intelligence (swarm algorithms) is the study of computer systems inspired by "collective intelligence". Collective intelligence emerges thanks to the cooperation of a large number of homogeneous agents in the environment. Examples include schools of fish, flocks of birds, and colonies of ants. This intelligence is decentralized, self-organized and distributed across an environment. In the wild, such systems are commonly used to solve problems such as efficient foraging, evading prey, or moving colonies.

Information is usually stored in all participating homogeneous agents, or is stored or communicated in the environment itself, for example through the use of pheromones in ants, dancing in bees, and proximity in fish and animals. birds.

As a group, simple creatures following simple rules can display a surprising amount of complexity, efficiency, and even creativity. Known as swarm intelligence, this trait is found in nature, but researchers have recently started using it to transform various fields such as robotics, data mining, medicine, and blockchains.

Ants, for example, can only perform a limited range of functions, but an ant colony can build bridges, create food and information highways, wage war, and enslave other ant species. - all of this is beyond the comprehension of a single ant. Likewise, schools of fish, flocks of birds, beehives, and other species exhibit behavior indicative of planning by a higher intelligence that does not actually exist.

This happens through a process called stigmergy. Simply put, a small change by one member of the group causes the other members to behave differently, leading to a new pattern of behavior.

When an ant finds a food source, it marks the way with pheromones. This attracts other ants to this path, leads them to the food source, and prompts them to mark the same path with more pheromones. Over time, the most efficient route will become the highway, because the faster and easier a path, the more ants will reach the food and the more pheromones will be on the path. So, it seems that a smarter being chose the better path, but it came out of the tiny and simple changes made by individuals.

The paradigm consists of two dominant subdomains 1) Ant Colony Optimization which studies probabilistic algorithms inspired by ant stigmergy and foraging behavior, and 2) Particle Swarm Optimization which studies inspired probabilistic algorithms by the herd, schools of fish and breeding. Like evolutionary computing, algorithms or swarm intelligence strategies are considered adaptive strategies and are generally applied to areas of research and optimization.